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INTRODUCTION 

Most microbiologically influenced corrosion (MIC) takes place in the presence of 
microbial consortia in which many different physiological types of bacteria interact in 
complex ways within the structure of biofilms. Microbiologically-mediated oxidation 
and reduction reactions of sulfur and sulfur compounds are important contributors to 
MIC. Sulfur and sulfur compounds, including sulfides, bisulfides, hydrogen sulfide 
(H2S), thiosulfates, polythionates and sulfuric acid, may be trapped or bound up in 
biofilms causing direct corrosion of materials. H2S and sulfuric acid may become 
gaseous or waterborne. 

SULFUR, SULFATE AND THIOSULFATE REDUCTION 

Reduction of elemental sulfur or thiosulfate results in production of H2S. H2S acidifies 
a corrosive medium and catalyses the penetration of hydrogen into steels, a process 
known as H2S-induced cracking or sulfide stress cracking. Crolet and Magot1 

described a group of bacteria isolated from an oilfield production facility capable of | 
reducing thiosulfate (S203), not sulfate, to sulfide. Corrosion penetration rates of 
carbon steel in the presence of these organisms was in excess of 1 cm per year. 
Sulfate-reducing bacteria (SRB) can stimulate corrosion by producing sulfide 
minerals. McNeil and Odom2 developed a thermodynamic model to predict metal 
susceptibility to MIC by SRB. Some metal oxides can be destabilized and act as a 
source of metal ions to react with the sulfide. The model is limited to thermodynamic 
predictions as to whether or not a reaction will take place and does not consider 
metal toxicity to the organisms, tenacity of the resulting sulfide or others factors that 
influence corrosion rate. ' j 

Reviews by Miller and Tiller3, Iverson4 and Postgate5 provide examples and Retails off 
MIC of iron and mild steel under anaerobic conditions caused by SRB. MIC failures! 
have been reported for mild steel piping and equipment exposed in the marine] 
environment, soil, oil refining industry, fossil fuel and nuclear power plants and! 
process industries. 

The impact of oxygen on obligate anaerobic SRB was examined by Hardy and 
Brown6 using mild steel and weight loss measurements. Successive aeration^ 
deaeration shifts caused variation in the corrosion rate. The highest corrosion rates! 
were observed during periods of aeration. Lee et al.7,8 determined that corrosionofj 
mild steel could not be initiated by SRB in the absence of ferrous ions. In theirl 
experiments, there was no correlation between corrosion rates and SRB in tn|I 
absence of ferrous ions. The impact of biogenic sulfides on the corrosion of C0PPJ|J 
alloys has received a considerable amount of attention.9'10,11 

Several investigators have demonstrated that there is no direct correlation betweejj 
numbers of sulfate-reducing bacteria and the likelihood that corrosion has occr" 
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or will occur '13 Jack et al.12 prepared a review of 30 months of electrochemical 
weight-loss data, water chemistry and microbiological data for an oilfield waterflood 
operation ,n which produced brine was injected to displace oil from the resenSr 
They concluded that SRB numbers could be used as an index of bS 
performance ,n these field systems. No other correlations between cor os on 
measurements and microbial numbers were found.' corrosion 

SULFUR/SULFIDE OXIDATION 

Corrosion associated with sulfur oxidation reactions involves autotrophic orqanisms 
Elemental sulfur, thiosulfates, metal sulfides, H2S, and tetrathionates can be oXd 

to sulfuric: acid. The specific oxidation reactions leading to production of sulfuric acid 
vanes with the starting reduced sulfur species. • " 

Corrosion in sewers and other concrete structures is often due to the oxidation of 

iUL m
eoH9enf ?ted by the aCtl'VitieS °f SRB and may occur in many sTeps Conaete 

is a moderately porous m.xture of highly alkaline inorganic precipitates and mineral 
aggregate Strong acids react with concrete materials destroying its stmc"u a 
integrity. Anaerobic conditions in sewage support SRB that convert suffSf S 
organic sulfides to H2S, which volatilizes £ the s'ewer JoXtTnälZtelt 

TNnH^T ?lthe SeWer Cr0Wn- A second immunity of microorganisms includina 
S?Ä f        'TT °Xidi2eS the Sulfide t0 corrosive sulfuric acid. SS'elr and 
oxdaSon     vrnrnir

e
r

dnohat Sim,''ar ^ °f SUlfür- Le- SU,fate auction ÄSe oxidation    by microorganisms was  responsible  for concrete  and  carbon  steel 
deterioration in a dam in South America. 

Sulfide oxidation reactions are important to the formation of sulfuric acid in cnal 
mines and ,n sulfur deposits. If FeS2 containing coals are exposed to mo^ture and 

suTfuric'aHd aTHe0USMFef\°Xidati0n StartS* reSU,ting in production of fe™ "on and 

™lT:c:
XiT°n t0,PH Va,UeS l0W6r 'han 2'  The f-ic "onVe

pro Uced inHth   e 

Zlnnl and the ungus, Hormoconis resinae. The individual orqanisms caused 
an approximate doubling of the corrosion rate compared to sterile conditonf Th. 
corrosion pattern included scaling, pitting  and stress-crackinn "»«S£     ,    J 

CONCLUSION 

3£ Tötest; S^anf '£31* ??** ***» 
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and adaotability of microorganisms in biofilms. The microbial ecology of sulfur-nch 
environment is poorly understood because of the association of aerobes and 
anaerabes and the mutualism or succession of heterotrophs to autotrophs. The 
ohvsical scale over which the sulfur cycle influences corrosion vanes with the type 
envLment TSe complete sulfur cycle of oxidation and reduction can take.placeun 
maTeSnments, including sewers and polluted harbors or withm the 
microenvironment of biofilms in process equipment. 
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